首页> 外文OA文献 >A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow
【2h】

A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow

机译:用于3D的高阶半显式不连续Galerkin求解器   应用于DNs和湍流通道流的LEs的不可压缩流

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present an efficient discontinuous Galerkin scheme for simulation of theincompressible Navier-Stokes equations including laminar and turbulent flow. Weconsider a semi-explicit high-order velocity-correction method for timeintegration as well as nodal equal-order discretizations for velocity andpressure. The non-linear convective term is treated explicitly while a linearsystem is solved for the pressure Poisson equation and the viscous term. Thekey feature of our solver is a consistent penalty term reducing the localdivergence error in order to overcome recently reported instabilities inspatially under-resolved high-Reynolds-number flows as well as small timesteps. This penalty method is similar to the grad-div stabilization widely usedin continuous finite elements. We further review and compare our method toseveral other techniques recently proposed in literature to stabilize themethod for such flow configurations. The solver is specifically designed forlarge-scale computations through matrix-free linear solvers including efficientpreconditioning strategies and tensor-product elements, which have allowed usto scale this code up to 34.4 billion degrees of freedom and 147,456 CPU cores.We validate our code and demonstrate optimal convergence rates with laminarflows present in a vortex problem and flow past a cylinder and showapplicability of our solver to direct numerical simulation as well as implicitlarge-eddy simulation of turbulent channel flow at $Re_{\tau}=180$ as well as$590$.
机译:我们提出了一种有效的不连续Galerkin方案,用于模拟不可压缩的Navier-Stokes方程,包括层流和湍流。我们考虑了时间积分的半显式高阶速度校正方法以及速度和压力的节点等阶离散化。在求解压力泊松方程和粘性项的线性系统时,应明确处理非线性对流项。我们求解器的关键特征是一个一致的惩罚项,它可以减少局部散度误差,从而克服最近报告的不稳定性,即空间上无法解决的高雷诺数流以及较小的时间步长。这种惩罚方法与连续有限元中广泛使用的grad-div稳定相似。我们进一步回顾和比较了我们的方法与文献中最近提出的其他几种稳定该流动配置方法的技术。该求解器是专门为通过无矩阵线性求解器进行大规模计算而设计的,包括高效的预处理策略和张量乘积元素,这使我们能够将此代码扩展到344亿自由度和147,456个CPU内核。层流在涡旋问题中的流动以及流过圆柱体的流动的收敛速度,证明了我们的求解器可用于直接数值模拟以及在$ Re _ {\ tau} = 180 $和$ 590 $的湍流通道流动的隐式大涡模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号